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We investigate statistics of lead changes of the maxima of two discrete-time random walks in one
dimension. We show that the average number of lead changes grows as π−1 ln t in the long-time
limit. We present theoretical and numerical evidence that this asymptotic behavior is universal.
Specifically, this behavior is independent of the jump distribution: the same asymptotic underlies
standard Brownian motion and symmetric Lévy flights. We also show that the probability to have at
most n lead changes behaves as t−1/4(ln t)n for Brownian motion and as t−β(µ)(ln t)n for symmetric
Lévy flights with index µ. The decay exponent β ≡ β(µ) varies continuously with the Lévy index
when 0 < µ < 2, while β = 1/4 for µ > 2.
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I. INTRODUCTION

Extreme values play a crucial role in science, technol-
ogy, and engineering. They are linked to rare events,
large deviations, and optimization: minimizing a La-
grangian, for instance, is a frequent task in physics. Ex-
treme values also provide an important characterization
of random processes, and the study of extreme values is a
significant area in statistics and probability theory [1–7].

For a scalar random process, there are two extreme
values—the maximum and the minimum. It suffices to
consider the maximum. Take the most basic random pro-
cess, Brownian motion [8–10]. By Brownian motion we
always mean standard Brownian motion, namely the one-
dimensional Brownian process that starts at the origin:
{B(t) : t ≥ 0} with B(0) = 0. For the Brownian motion,
the maximum process {M(t) : t ≥ 0} is defined by

M(t) = max
0≤s≤t

B(s). (1)

This maximum process is non-trivial as demonstrated
by the absence of stationarity—the increment M(t+τ)−
M(t) depends on both t and τ . In contrast, the posi-
tion increment, B(t+ τ)−B(t), depends only on τ ; this
stationarity is a crucial simplifying feature of Brownian
motion. Still, the maximum process (1) has a number
of simple properties, e.g. the probability density of the
maximum m ≡M(t) is a one-sided Gaussian

Q(m, t) =

√
2
πt

exp
(
−m

2

2t

)
, m ≥ 0 . (2)

The joint probability distribution of the position and
maximum, B(t) = x and M(t) = m, also admits an
elegant representation [11]

Π(x,m, t) =

√
2
πt3

(2m− x) exp
[
− (2m− x)2

2t

]
(3)

t

FIG. 1: Space-time diagram of the positions (thin lines) and
the maxima (thick lines) of two Brownian particles. In this
illustration, the leadership changes twice.

This lesser-known formula, which was discovered by Lévy
[8], proves useful in many situations (see [9, 12]); it can be
derived using the reflection property of Brownian motion.

In this article, we study the leapfrogging of the maxima
of two Brownian motions (see Fig. 1). The probability
that one maximum exceeds another during the time inter-
val (0, t) was investigated only recently [13, 14]. Here we
explore additional features of the interplay between two
Brownian maxima. When appropriate, we emphasize the
universality of our results, e.g. some of our findings ap-
ply to rather general Markov processes, e.g. to arbitrary
symmetric Lévy flights.

One of our main results is that the average number of
lead changes between the two Brownian maxima exhibits
a universal logarithmic growth

〈n〉 ' 1
π

ln t (4)

in the long-time limit. This behavior holds for random
walks, and more generally for identical symmetric Lévy
flights.
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We also study the probability fn(t) to have exactly n
lead changes during the time interval (0, t), see Fig. 1.
We show that in the case of identical symmetric Lévy
flights, the probability fn(t) decays according to

fn(t) ∼ t−β(µ)(ln t)n. (5)

The persistence exponent β(µ), that characterizes the
probability that the lead does not change, depends only
on the Lévy index µ. We evaluate numerically the quan-
tity β(µ) for 0 < µ < 2.

This paper is organized as follows. In Sect. II we es-
tablish the growth law (4). First, we provide a heuristic
derivation (Sect. II A) relying on the probability den-
sities (2)–(3). We also mention the generalization to
two random walks with different diffusion coefficients.
In Sect. II B we establish a link with first-passage time
densities and the arcsine law, and we employ it to pro-
vide a more rigorous and more general derivation of (4).
In Sect. III we study the statistics of lead changes for
symmetric Lévy processes, particularly symmetric Lévy
flights with index 0 < µ < 2. The average number of
lead changes is shown to exhibit the same universal lead-
ing asymptotic behavior (4) independent of the Lévy in-
dex. In Sect. IV we show that for identical symmetric
random walks the probability to observe exactly n lead
changes between the maxima behaves as t−1/4(ln t)n. We
conclude with a discussion (Sect. V).

II. THE AVERAGE NUMBER OF LEAD
CHANGES

The question about the distribution of the number of
lead changes of Brownian particles is ill-defined if one
considers the positions—there is either no changes or
infinitely many changes. The situation is different for
the maxima: the probability density fn(t) to have ex-
actly n changes during the time interval (0, t) is a well-
defined quantity if the initial positions differ. Discretiza-
tion is still necessary in simulations. The discrete-time
framework also simplifies the heuristic reasoning which
we employ below. The corresponding results for the
continuous-time case follows from the central-limit theo-
rem: a random walk with a symmetric jump distribution
that has a finite variance converges to a Brownian mo-
tion.

Thus, we consider two discrete time random walks on
a one-dimensional line. The position of each walk evolves
according to

x(t+ 1) = x(t) + ∆(t) . (6)

The displacements ∆(t) are drawn independently from
the same probability density P(∆) which is assumed to
be symmetric, and hence 〈∆〉 = 0. We set the variance
to unity, 〈∆2〉 =

∫
d∆ ∆2P(∆) = 1. Further, we always

assume that the walk starts at the origin x(0) = 0. The

probability distribution of its position becomes Gaussian

P (x, t) =
1√
2πt

exp
(
−x

2

2t

)
, (7)

in the long-time limit. The maximal position of the walk
during the time interval (0, t) is

m(t) = max{x(0), x(1), x(2), . . . , x(t)} . (8)

The probability distribution of the maximum is given by
(2), and the joint position-maximum distribution is given
by (3).

In the following, we consider two identical random
walkers. We assume that both walkers start at the ori-
gin, x1(0) = x2(0) = 0. Denote by x1(t) and x2(t) the
positions of the walkers and by m1(t) and m2(t) the cor-
responding maxima. If m1(t) > m2(t) the first walker is
considered to be the leader. If m1(t) = m2(t) the notion
of the leader is ambiguous. This happens at t = 0, and
we postulate that the first walker is the original leader.
There are no lead changes as long as both walkers re-
main in the x < 0 half-line. Once the walkers spend time
in the x > 0 half-line, the identity of the leader can be
ambiguous if the probability density is discrete, e.g.,

P(∆) = 1
2δ(∆− 1) + 1

2δ(∆ + 1) (9)

In the following, we tacitly assume that the probability
density does not contain delta functions, so once the two
maxima become positive they remain distinct.

Eventually the maximum of the second walker will
overtake that of the first and the second walker turns
into the leader. Yet, at some later moment, the leader-
ship will change again. This leapfrogging proceeds indef-
initely. How does the average number of lead changes
vary with time? What is the distribution of the number
of lead changes? In this section we answer the first ques-
tion. First, we provide a derivation of the asymptotic
growth law (4) using heuristic arguments.

A. Heuristic arguments

We now argue that the average number of lead changes
exhibits the logarithmic growth (4). Let m2(t) < m1(t)
and the lead changes soon after that. We use the short-
hand notation m ≡ m1(t). The probability density for
this quantity is given by (2). We are interested in the
asymptotic behavior (t � 1) and in this regime, the
random walker is generally far behind the maximum.
This behavior is intuitively obvious, and it can be made
quantitative—using (3) we compute the average size of
the gap between the maximum and the position

〈m− x〉 =
∫ ∞

0

dm

∫ m

−∞
dx (m− x)Π(x,m, t)

=

√
2t
π

(10)
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The second maximum can overtake the first if x2(t) is
close to m. Since x2 ≤ m2 < m, both x2 and m2 are
close to m and the probability of this event is

Π(m,m, t) =

√
2
πt3

m exp
(
−m

2

2t

)
. (11)

Once the second particle reaches the leading maximum
it will overtake it given that the first particle is typically
far behind, see (10). Therefore, the lead changes with
rate

Π(m,m, t)Q(m, t) =
2m
πt2

exp
(
−m

2

t

)
Integrating over all possible m yields

d〈n〉
dt

=
∫ ∞

0

dm
2m
πt2

exp
(
−m

2

t

)
=

1
πt

(12)

which gives the announced growth law (4).
The average (4) already demonstrates that the lead

changing process is not Poissonian. For a Poisson pro-
cess, the probability Un to have exactly n lead changes
is fully characterized by the average ν(t) ≡ 〈n(t)〉:

Un =
νn

n!
e−ν . (13)

This distribution would imply that the probability of
having no lead change decays as exp[−(ln t)/π] ∼ t−1/π,
that is, slower than the f0 ∼ t−1/4 behavior which has
been established analytically [13, 14].

It is straightforward to generalize equation (4) to the
situation where the two random walks have different dif-
fusion coefficients, denoted by D1 and D2. By repeating
the steps above, we get

〈n〉 ' 2
π

√
D1D2

D1 +D2
ln t. (14)

In particular, in the limit when one of the particles dif-
fuses much more slowly than the other, ε = D1/D2 → 0,
we have 〈n〉 ' (2

√
ε/π) ln t.

B. First-passage analysis

Here, we present an alternative approach which com-
plements the heuristic arguments given in Sect. II A.
This approach is formulated in continuous time, and it
accounts for the universality observed in the numerical
simulations (see Fig. 3).

If m1(t) = m > 0, the probability that m2 becomes the
leader in the interval (t, t+∆t) is given by the probability
that the first-passage time of x2 at level m is in (t, t+∆t).
Let us write Φ(m, t) for the first-passage density, and
recall that the density of the maximum, Q(m, t) is given
by (2). By integrating over m, we obtain the average rate
of lead changes as a first-passage equation

d〈n〉
dt

= 2
∫ ∞

0

dmΦ(m, t)Q(m, t). (15)

m

 0

t t+τ* 2t 0

po
si

tio
n

time

m

 0

t 0

m

 0

τ* t 0

FIG. 2: Path transformation leading to (16): split the sec-
ond Brownian path (top right) into its pre-maximum part
and its post-maximum part (these two parts are independent
by property of the time at which a Markov process attains
its maximum); reverse time in the pre-maximum part (in
green) and shift downward by −m the post-maximum part (in
blue); concatenating this with the other, independent Brow-
nian path (top left), one obtains a new Brownian path of
double duration (bottom). Note that its final value will be
non-positive, and its maximum, also equal to m, will be at-
tained at time t.

The multiplicative factor 2 on the right-hand side of (15)
takes into account that m2(t) could have been the leader.
In the case of Brownian motion, the first-passage density
Φ(m, t) is known [15], e.g. it can be derived using the
method of images. This allows one to compute the inte-
gral in (15).

Interestingly, one can evaluate the integral in Eq. (15)
without reference to the explicit forms of Q and Φ. This
evaluation uses path transformations in the same spirit
as the well-known Verwaat construction for Brownian ex-
cursions [16]. One notices that the integrand in (15) cor-
responds to the product of densities associated with two
independent paths: (i) a path first hitting m at time t,
and (ii) a path having on (0, t) a maximum equal to m at-
tained at some time τ∗. One then establishes a bijection
between pairs of such paths and paths of duration 2t, as
illustrated in Fig. 2. This path transformation procedure
produces paths of duration 2t attaining their maximum
at time t, and having a non-positive final value.

When integrating over m the product Φ(m, t)Q(m, t),
one therefore obtains one half of the probability density
associated with Brownian paths of duration 2t attaining
their maximum at time t. This density is easily derived
from the famous arcsine law [8, 17], which states that the
probability density for the time τ at which a Brownian
motion attains its maximum over a fixed time interval
(0, T ) is given by 1/[π

√
τ(T − τ)]. One thus obtains∫ ∞

0

dmQ(m, t)Φ(m, t) =
1
2

1
π
√
t(2t− t)

=
1

2πt
. (16)
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By combining (16) with (15), one recovers the heuris-
tic prediction (12) 〈n〉 ' A ln t and confirms A = 1/π.
Moreover, the derivation is now sufficiently general as it
applies to all random walks with symmetric jump distri-
butions. Hence the leading asymptotic behavior (4) does
not depend on the details of the (symmetric) jump dis-
tribution, in full agreement with the universality of the
amplitude observed in numerical simulations. The first-
passage equation and path transformation procedure can
be applied to random walks that do not converge to
Brownian motion, as discussed in the next section.

III. LÉVY FLIGHTS

Brownian motion belongs to a family of (symmetric)
Lévy processes [8, 18–20]. These processes are stationary,
homogeneous and stable. In a discrete time realization,
a Lévy process becomes a Lévy flight. Lévy flights are
ubiquitous in Nature, see [21–24]. Here, we examine lead
changes of the maxima of two identical Lévy flights. For
Lévy flights, the jump distribution P(∆) has a broad tail,
and the Lévy index µ quantifies this tail, P(∆) ∼ |∆|−µ−1

as |∆| → ∞. For simplicity, we choose the purely alge-
braic jump distribution,

P(∆) =

{
µ
2 |∆|

−µ−1 |∆| > 1 ,
0 |∆| < 1 .

(17)

When µ > 2, Lévy flights are equivalent to an ordinary
random walk. For true Lévy flights 0 < µ ≤ 2; in this
range the variance 〈∆2〉 diverges. For 0 < µ ≤ 1 even the
average jump length 〈|∆|〉 becomes infinite. Generally for
µ < 2 the displacement x(t) scales as t1/µ.

We now show that the average number of lead changes
exhibits logarithmic growth. Denote by Qµ(m, t) the
probability density of the maximum process and by
Φµ(m, t) the density of the first passage time at level m.
Following the same reasoning as in Sect. II B, we write
for the rate at which lead changes take place:

d〈n〉
dt

= 2
∫ ∞

0

dmΦµ(m, t)Qµ(m, t). (18)

We now invoke the scaling properties of Lévy flights

Φµ(m, t) ' m−µΦµ(1,m−µt),

Qµ(m, t) ' t−1/µQµ(t−1/µm, 1).
(19)

These scaling forms reflect that the maximum process
is (µ)-stable and the first-passage time process is (1/µ)-
stable. Combining (18) and (19) we get

d〈n〉
dt

= 2
∫ ∞

0

dmm−µΦµ(1,m−µt)t−1/µQµ(t−1/µm, 1)

' 2
t

∫ ∞
0

dz

zµ
Φµ(1, z−µ)Qµ(z, 1) =

A(µ)
t

.
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FIG. 3: The average number of lead changes 〈n〉 versus time
t. Shown (top to bottom) are simulation results for identical
Lévy flights with index µ = 1/2, µ = 1, µ = 3/2 and for ran-
dom walks (µ > 2). The inset shows d ln〈n〉/d ln t versus time
t, demonstrating that the amplitude A(µ) in (20) is universal
and equal to 1/π.
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FIG. 4: The survival probability f0(t, µ) versus time t for Lévy
flights. Shown are (from top to bottom) simulation results for
the values µ = 3/2, µ = 1, and µ = 1/2.

Consequently, the average number of lead changes grows
logarithmically with time,

〈n〉 ' A(µ) ln t. (20)

Our numerical simulations confirm that for identical
random walks on a line, and even for random walks on
the lattice with the discrete jump distribution (9), the
amplitude A(µ) is independent of the details of the jump
distribution. Furthermore, the universality continues to
hold for the Lévy flights, so A = 1/π independent of the
Lévy index µ. This is confirmed by numerical simulations
(see Fig. 3).

The universality can be understood by noting that the
path transformation procedure described at the end of
the previous section, as well as the arcsine law, are valid
for Lévy flights. The key requirements are to have cyclic
exchangeability of the jumps (which is guaranteed when
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FIG. 5: The persistence exponent β versus the index µ char-
acterizing (symmetric) Lévy flights.

these are independent and identically distributed), a con-
tinuous and symmetric jump distribution, and a certain
type of regularity for the supremum, see [18, 20, 25, 26].
The validity of the arcsine law implies that we can use
(16). Thus the leading asymptotic (4) holds for a wide
class of symmetric Lévy processes, and in particular,
symmetric Lévy flights.

Next, we examine the probability f0(t, µ) that there
are no lead changes till time t. Our simulations show
that this probability decays algebraically (see Fig. 4):

f0(t) ∼ t−β(µ). (21)

The persistence exponent β(µ) varies continuously with
µ, namely β(µ) is a monotonically decreasing function of
µ, see Fig. 5. For µ > 2, Lévy flights are equivalent to
ordinary random walks, so β(µ) = 1

4 for µ > 2.
In the marginal case µ = 2, the mean-square displace-

ment has a logarithmic enhancement over the classic dif-
fusive growth, 〈x2〉 ∼ t ln t. Consequently, the conver-
gence toward the ultimate asymptotic behavior is very
slow near µ ≈ 2. Our numerical simulations suggest that
in the marginal case µ = 2, there may be a logarithmic
correction to the algebraic decay (21).

IV. DISTRIBUTION OF THE NUMBER OF
LEAD CHANGES

We now focus on the probability fn(t) to have exactly
n lead changes until time t. For two identical random
walks, the probability that there are no lead changes de-
cays as f0 ∼ t−1/4 in the long-time limit [13, 14]. Since
fn(t) is the probability that the (n + 1)-st lead change
takes place after time t, the probability density for the
(n + 1)-st lead change to occur at time t is given by
−dfn/dt. In particular, from f0, one can write down the
conditional probability density ρs of the time of the next
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FIG. 6: The quantities (Fnt
1/4)1/n versus time t for n = 1 and

n = 2. The data corresponds to simulations of two ordinary
random walks in one dimension.

lead change, given that it takes place after time s:

ρs(τ) =
1

f0(s)

[
−df0(τ)

dτ

]
∼ s1/4τ−5/4. (22)

Furthermore, the quantity f1(t) is the probability that
the first lead change occurs at some time s ≤ t and that
the next one occurs at some time τ ≥ t. The probability
density associated with such a configuration is simply
proportional to[
−df0
ds

]
×
∫ ∞
t

dτ ρs(τ) ∼ s−5/4 × s1/4t−1/4 ∼ s−1t−1/4.

Integrating over s [we could introduce a cut-off ∆s, but
this is akin to a discretization of time, so in the large t
limit we might as well set 1 < s < t− 1], we find

f1(t) ∼
∫ t−1

1

ds s−1t−1/4 ∼ t−1/4(ln t).

Hence, there is a logarithmic enhancement of the prob-
ability to have one lead change compared with having
none. The above argument can be generalized to arbi-
trary n to yield

fn ∼ t−1/4(ln t)n. (23)

One can establish this general behavior by induction:

fn+1(t) ∼
∫ t−1

1

ds

[
−dfn(s)

ds

] ∫ ∞
t

dτ ρs(τ)

∼
∫ t−1

1

ds (ln s)n s−5/4s1/4t−1/4

∼ t−1/4

∫ t−1

1

ds(ln s)n s−1

∼ t−1/4(ln t)n+1.

Thus, there are logarithmic corrections for all n.
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We probed the behavior of the cumulative distribution
Fn(t) =

∑
0≤k≤n fk(t) using numerical simulations. The

quantity Fn(t) is the probability that the number of lead
changes in time interval (0, t) does not exceed n. The
dominant contribution to Fn is provided by fn and hence

Fn(t) ∼ t−1/4(ln t)n. (24)

We verified Eq. (24) numerically for n = 1 and n = 2,
see Fig. 6.

For Lévy flights, the distribution of the number of lead
changes can be established in a similar manner. Using
(21) and following the derivation of (23) we get

fn(t) ∼ t−β(µ)(ln t)n, (25)

where β(µ) is the aforementioned persistence exponent.
Using numerical simulations, we verified that (25) holds
for n = 1 and n = 2 for a few representative values of the
Lévy index in the µ < 2 range.

V. DISCUSSION

The simplest model of correlated random variables is
a one-dimensional discrete-time random walk. Its maxi-
mum evolves by a random process that exhibits a number
of remarkable features. Some of these properties are clas-
sical [8–10], while others were discovered only recently
[12, 27–29]. For instance, the probability distribution
for the total number of distinct maximal values (records)
achieved by the walk is universal [27], i.e., independent
of the details of the jump distribution, as long as the
jump distribution is symmetric and not discrete. This
universality also holds for symmetric Lévy flights, and in
fact, it is rooted in the Sparre Andersen theorem [30].
In the case of multiple identical random walks, the total
number of records has been investigated in [31].

In this article, we studied a sort of “competition” be-
tween maxima of two identical random walks. In partic-
ular, we examined the average number of lead changes
and the probability fn(t) to have exactly n changes. We
found that the average number of lead changes exhibits
a universal logarithmic growth (4). This asymptotic be-
havior also holds for symmetric Lévy flights with arbi-
trary index. In contrast, the probability distribution
fn(t) is not universal: the persistence exponent β(µ) in
(25) depends on the Lévy index µ. The most interesting
challenge for future work is to determine analytically the
continuously varying exponent β(µ) in the range µ < 2.

One natural generalization of the competing maxima
problem is to an arbitrary number k of identical random
walks or Lévy flights. We expect that the average number
of lead changes among the maxima of k identical random
walkers still exhibits a universal logarithmic growth, al-
beit with a k-dependent prefactor. Another quantity of
interest is the survival probability Sk(t, µ) that k Lévy
maxima remain ordered, m1(τ) > m2(τ) > . . . > mk(τ),
for τ = 1, 2, . . . , t. Based on (21), we anticipate that the
probability Sk(t, µ) decays algebraically,

Sk(t, µ) ∼ t−βk(µ). (26)

Similar algebraic decays with k-dependent exponents de-
scribe the probability that the positions of random walks
remain perfectly ordered, the probability that one ran-
dom walk remains the leader, etc. [32–37].

For k = 2, the exponent appearing in (26) is our ba-
sic persistence exponent: β2(µ) ≡ β(µ). The exponents
βk(µ) do not depend on µ when µ > 2, i.e., for ran-
dom walks. For ordinary random walks, the exponents
βk were studied numerically in [13], while approximate
values for these exponents were computed in [38].

Generally one would like to explore the statistics of or-
dering and lead changes for a collection of random vari-
ables. Even the case of Markovian random variables is
far from understood. Non-Markovian random variables
appear intractable, but sometimes the progress is feasible
due to hidden connection to Markovian processes. For in-
stance, in the case of Brownian maxima the first-passage
processes are Markovian. This allows one to use results
from classical fluctuation theory to derive the persistence
exponent β = 1/4, see [14], and yields another derivation
of the logarithmic growth of the average number of lead
changes [39]. For Lévy flights, however, the existence of
leapovers at the first passage time of certain points [40]
leads to a breakdown of this approach. New results in
this direction represent challenges for future work.
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